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Although thermodynamic formalisms for protein denaturation have been established for some time, available
software programs for deconvolution of DSC data exhibit various limitations. These include enforcing a
constant ∆Cp(T), linear heat capacity functions, and so on. We have developed a Windows™ based program
that allows greater flexibility, speed and accuracy than previously available programs for the analysis of DSC
data.  One novel feature of the program is the inclusion of, and ability to refine, a concentration-dependent term.

Introduction

Monitoring the temperature-dependent phase transitions of proteins in aqueous solution can provide

important details regarding the non-covalent interactions that stabilize the native state. Knowledge of the

thermodynamic parameters of unfolding for globular proteins, in conjunction with mutagenesis, has advanced

our understanding of protein structure, stability and folding [1-3].  As dilute solutes in aqueous solution, the heat

capacity contribution of protein molecules is small compared to the overwhelming contribution of the solvent.

The development of differential scanning calorimetry (DSC) has provided a method to subtract the heat capacity

contribution of the solvent and characterize the thermodynamic properties of the protein solute (for review see

[4]).

Statistical mechanics-based models describing the thermodynamic properties of macromolecular phase

transitions have been described [5-7].  However, there is a very limited availability of software for analysis of

DSC data.  In addition, recent state-of-the-art instrumentation places additional demands upon speed, accuracy,

model flexibility and implementation on a common hardware platform for such software.  For example,

available programs typically require operator intervention to define pre- and post-transition baseline functions.

Coupled with a non-convergent least-squares fitting proceedure, refined values for the thermodynamic

parameters will vary depending upon the choices of the particular operator.  Some programs force the pre- and

post-transition baselines to be parallel (i.e. ∆Cp is a constant with temperature).  While this simplifies the

computation (the definition of the enthalpy associated with the phase transition includes an integration term for
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∆Cp), such a model will erroneously identify transitions with non-parallel baselines as being non-2-state.

Additionally, although the denatured state heat capacity function of polypeptides is generally acknowledged to

be non-linear [8], current analysis programs utilize computationally expedient linear functions for such

baselines.  To address these issues we have developed a highly customizable program, named DSCFit, for the

analysis of DSC data, implemented on the Windows™ platform.

Materials and Methods

Thermodynamic functions

All temperatures are absolute (K), and heat capacities are Jmol-1K-1.  However, since the temperature

range to be analyzed for soluble proteins is limited to the liquid phase of water, the temperature value for the y

intercept (heat capacity) of all functions is not referenced at 0K, but rather, the melting temperature (TD) of the

data. The native state heat capacity function, CN(T), and denatured state heat capacity function, CD(T), are

defined as second order polynomials with coefficients A0, B0 and C0 and A1, B1 and C1 for the CN(T) and CD(T)

functions, respectively:
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From these definitions, it follows that the ∆Cp(T) function (∆Cp = CD(T) - CN(T)) is also a second order

polynomial:
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The ∆Hsys(T) function is defined as a third-order polynomial with coefficients DA, DB, DC and DD:
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From (4) it can be seen that at T = TD, the value of the ∆Hsys(T) function reduces to DD.  Since the derivative of

the ∆Hsys(T) function is ∆Cp(T), it follows from (4) that:
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Given that the entropy function, ∆S(T), is formally:
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all thermodynamic functions are now described in terms of parameters A0, B0, C0, A1, B1, C1, DD and TD.

From (3) and (5) it can be seen that the value of the ∆Cp(T) function at the melting temperature, TD, is equal to:

( ) DCCCTDCp =−=∆ 01)( (8)

Therefore:

01 CDCC += (9)

Substituting (9) into (2) gives:
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Thus, ∆Cp(T) is now:
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All thermodynamic functions are now described in terms of parameters A0, B0, C0, A1, B1, DC, DD and TD,   

where DC is the value of the ∆Cp(T) function at the melting temperature (TD), and DD is the value of the

∆Hsys(T) function at the melting temperature.

∆G(T) is:

( ))()( TSTTHG ∆−∆=∆ (14)

The fractional component of native state as a function of ∆G(T) is given as:
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The raw data is thus modeled by the C(T) function [5-7]:
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The first part of this equation describes the heat capacity contribution associated with the mole fraction of the

native and denatured states.  The second part describes the contribution to the observed heat capacity from the

enthalpy associated with the phase transition.
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The introduction of a scalar, k, allows for evaluation of concentration-dependent effects, such as

concentration errors in the sample, and the value of the van't Hoff to calorimetric enthalpy ratio (∆HvH/∆Hcal)

(see discussion below):
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A graphical representation of the model parameters is shown in Fig. 1 and the implications upon the fitting

model when constraining the various parameters are listed in table I.

Figure 1. Graphical representation of model parameters A0, B0, C0, A1, B1, DC, DD and TD for the
thermal denaturation of a hypothetical protein.

Table 1.  Parameter values and resulting restraints of the fitting model
Parameter Value Model

A0 ≠ 0 Native state baseline second-order polynomial
A0 = 0 Native state baseline linear
A0 = 0, B0 = 0 Native state baseline constant
A1 ≠ 0 Denatured state baseline second-order polynomial
A1 = 0 Denatured state baseline linear
A1 = 0, B1 = 0 Denatured state baseline constant
DC = constant ∆Cp @ TD fixed during refinement
k = 1 ∆HvH = ∆Hcal

k = float 1)  Evaluation of concentration errors/extinction coefficient ( ∆HvH = ∆Hcal)
2)  Evalution of ∆HvH/∆Hcal (with known concentration)
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Parameter Refinement

Parameter fitting utilizes the Levenberg-Marquardt nonlinear regression method [9, 10].  Initial guesses

for the parameters are determined without operator intervention using the following simple algorithm.  The

value of TD is assigned to be the temperature of the largest y value (heat capacity) in the input data set.  The

parameters A0, A1 and DC are assigned default values of 0, and parameter k is assigned a default value of 1.0. A

linear function is determined using the first and last data points.  Parameters B0, B1 are set equal to the slope of

this linear function and C0 is set equal to the y intercept referenced at the TD value.  The initial guess for the DD

term is determined by taking the difference between the value of the data set at TD and the above described

baseline function and multiplying by 10K (we have found this to be a generally useful heuristic for proteins).

The program then performs a single iteration of least-squares refinement and presents the resulting values as

appropriate initial guesses for all parameters.  The merit function for refinement, χ2, is defined as follows:
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where i ranges from 1 to the number of input data points, and aj is the parameter vector with j parameters (i.e. 9

in the present model).  The gradient of the merit function is determined by calculating the partial derivatives of

the fitting equation (17) with respect to each of the parameters and solving for the minimum.  Thus, the model

includes nine partial derivatives.  These equations are solved simultaneously using the method of Gauss-Jordan

elimination. Fit convergence is achieved when a predetermined value for the standard deviation is reached, ∆χ2

is sufficiently small, a specified number of iterations are completed, or χ2 does not improve for a certain number

of iterations.  The user determines the choice of convergence criteria.

Analysis of Test Data

Analysis of test data involved the temperature-dependent phase transition for human acidic fibroblast

growth factor (FGF-1).  FGF-1 has been extensively characterized with regard to DSC, circular dichroism (CD)

and fluorescence data for a wide range of temperature and denaturant conditions [11].  The denaturation of this

macromolecule has been demonstrated to be two-state and reversible under the conditions employed.

Experimental determination of the denatured state heat capacity function, CD(T), over the temperature range

273-363K was achieved by analysis in the presence of 3.95M GuHCl, 20mM N-(2-Acetamido)iminodiacetic

acid, 100Mm NaCl, pH 6.60.  The temperature of maximum stability of FGF-1 is approximately 290K [11].  In

3.95M GuHCl at 290K the ∆Gunfolding extrapolates to -47kJ/mol [11], to give a Keq = 2.35 x 108.  Thus, in 3.95M

GuHCl there is no temperature at which the native state is significantly populated, and the experimentally

observed heat capacity function represents CD(T) throughout the entire temperature range.
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Discussion

Program Speed

The program utilizes algebraically-derived derivatives, as opposed to using numerical methods, to

calculate the partial derivatives required for the Levenberg-Marquardt non-linear least squares refinement

method.  The speed advantage of such an approach was evaluated by comparison to an identical model

implemented within a general-purpose non-linear least squares fitting program (DataFit, Oakdale Engineering)

that relies upon numerical methods to determine partial derivatives.  Notwithstanding any graphics-related

overhead, the results showed that the implementation of algebraically derived derivatives is approximately 25

times faster for an equivalent number of refinement cycles.

Program Accuracy

The accuracy of the general purpose non-linear least squares fitting program DataFit has been verified

with the Statistical Reference Datasets Project of the National Institute of Standards and Technology (NIST).

The refined parameters from our program, for every data set analyzed, are in excellent agreement (i.e. to 8 digits

of precision) with those from DataFit and typically exhibit slightly improved values for the fitting residual.

Implementation of Independent Baselines

Native and denatured state baselines in our fitting model are implemented as independent, second-order

polynomial functions.  Thus, ∆Cp(T) is likewise a second-order polynomial.  This is in contrast to other DSC

analysis programs (e.g. DSC for Origin, MicroCal Software) that constrain ∆Cp(T) to be a constant throughout

the temperature range.  Other than ease of calculation, there is no basis to assume that the heat capacity

functions of different phases of a macromolecule will be parallel.  For those proteins where the native and

denatured state heat capacity functions are clearly not parallel, forcing ∆Cp(T) to be a constant will result in

systematic residual scatter indicative of non-two-state behavior (Fig. 2).

Ability to use second-order polynomial CN(T) and CD(T) functions

Analysis of the DSC data for denatured FGF-1 indicates that the CD(T) function exhibits a noticeable

positive curvature (Fig. 3).  A second-order polynomial is a more accurate model to this data than a linear

function.  Available experimental data for Cp(T) functions of other proteins over such an extensive temperature

range is limited, but indicates that negative curvatures are more commonly observed [12, 13].  The

implementation of second-order polynomials still allows the use of linear functions, since the coefficient for the

second-order term can be set to zero.  For some proteins with generally low thermal stability (like FGF-1) the

ability to perform DSC analysis in the presence of denaturing conditions allows the entire CD(T) function to be

determined and to evaluate whether a second-order polynomial fit is appropriate.



Protein and Peptide Letters 6, 429-436 (2001)

Figure 2.  Residual scatter for the fitting of DSC data of human acidic fibroblast growth factor [11].   The
light line indicates the residual scatter using a model with constant ∆∆∆∆Cp(T).  The heavy line indicates the

residual scatter using a model where CN(T) and CD(T) are independent functions.

Figure 3. CD(T) function for human FGF-1 (DSC analysis performed in 3.95M GuHCl buffer).  The thin
line shows a second-order polynomial fit to the data.

Inclusion of Concentration-dependent Parameter, k

Raw DSC data for FGF-1 at a concentration of 0.04mM (as determined from the spectroscopic

extinction coefficient), were normalized prior to analysis using values of either 0.02mM, 0.04mM or 0.06mM in

order to evaluate concentration errors. If the concentration parameter k was allowed to float during the fit it

converged to a value of 0.489, 0.979 and 1.47 for the data normalized as 0.02, 0.04 and 0.06mM, respectively.

Using these values for k and the respective normalized concentrations, the corrected concentration of the protein

was determined to be (0.02mM/0.489), (0.04mM/0.979), (0.06mM/1.47), or 0.0409mM in each case. Using k in

this manner, the actual concentration of FGF-1 in the sample was determined to be 0.0409 mM, or within 2% of

the concentration determined by spectroscopic means.  The parameter k can thus be used in two different ways
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to provide additional useful information from DSC data; it can be interpreted as either 1) a concentration

parameter (assuming that the transition is purely two-state), or 2) the value of van't Hoff to calorimetric enthalpy

(i.e. k = ∆HvH/∆Hcal) if the concentration has been determined accurately.

In summary, we have developed a special-purpose flexible-model program, DSCfit, designed for the

analysis of DSC data. Because of algebraically-derived derivatives, the program is significantly faster and more

accurate than other DSC analysis programs that rely upon general purpose non-linear least square routines

utilizing numerical methods (e.g. DSC for Origin, and DDCL [6, 14]). The program can also model more

accurately situations in which the native and denatured state heat capacity functions are independent and non-

linear (for polypeptides the denatured state heat capacity function is decidedly non-linear [15]).  With the

current generation of instrumentation [13, 16] such features of the heat capacity functions are often

demonstrable. A completely novel feature found in the program is the inclusion of the concentration parameter,

k. In this regard, it is now feasible to use DSC as a method to determine the extinction coefficient of

macromolecules.  To our knowledge, this use of DSC data to determine an extinction coefficient has not

previously been described.
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