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Summary

The human kallikrein (hK) family of serine proteases comprises 15 members, 12 of which
were identified only within the past decade. Although churacterization is far from com-
plete. the various members of this family appear to span the range from de eradative Lo reg-
ulatory type proteases, and wre involved in a variety of physiological processes and dis-
eases. Human Kallikrein | (hK1: also known as tissue kallikrein) cleaves various prohor-
mones and bioactive peptides and plays a major role in blood pressure regulation, inflam-
mation. and heart disease. As part of this function. hK 1 exhibits unique dual-substrate
specificity. and is able to hydrolyze low molecular weight kininogen between hoth Arg-
Ser and Met-Lys sequences. The active site of apo hK1 exhibits structural features inter-
mediate between that of apo and pro forms of known kallikrein structures and boynd pep-
tide ligands appear to contribute to the formation of a catalytically-competent active site
structure. In response to the binding of peptide ligands, the S2 to $2° pockets demonstrate
a variety of conformational changes. including the displagement of an exiensive solvent
network. The solvent network within the 52 to $2* pockets of the apo form suggests how
novel inhibitors might be designed.

Introduction
The kallikreins (derived from the Greek word “kallikreas™ which means pancreds. and -

historically a rich source of these proteases ') are a family of closely-related serine pro-
teases that are distributed in a wide variety of tissues and biological fluids, The human
kallikrein family has gained attention in recent vears due Lo the fact that most of its mem-
bers appear to be differentially expressed in normal versus cancerous fissues, and this may
prove (o be a useful diagnostic in certain diseased states. For example. prostate specific
antigen (PSA. or hK3) and hK2 (sometimes also referred to as “glandular kallikrein™) ure
considered as the most useful biomarkers known for prostale cancer . Other kallikreins
have been proposed as diagnostic markers for breast (hK3, hK6) and ovarian cancers
(hK6, hKY, hK10 and hK11) ™. More recently, several studies have shown that hK6 may
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play a key role in the regulation of myelin trmover. and in demyelinating disease "™ as
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well as the degradation of Z-amyloid, or turnover of amyloid precursor profein

Mouse K8 has been implicated in neuronal function (kindling epileptogenesis) ™", Thus,
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the functional and biophysical properties of the kallikreins are of substantial interest.
The most extensively studied member of the kallikrein family is “tissue kallikrein™ or
hK 1. This kallikrein is known o cleave various prohormones and bioactive peptides

&

including kininogen. proinsulin. prorenin, and procollagenase "™ und plays a major role in
imflammation and heart disease. The prohormone kininogen is synthesized in the liver and
comprises two components: high molecular weight Kininogen (120 kDa) and low molecu-
lar weight kininogen (68 kDa). Lysyl-bradykinin, or kallidin, is a decapeptide produced by
the proteolytic action of hK1 upon low moleculuar weight kininogen via cleavage between
two specilic bonds involving Met-Lys and Arg-Ser sequences, and this dual specificity of
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hKI is a unique functional property of this kalliksein . Lysyl-bradykinin is a vasoactive

peptide that lowers blood pressure and plays an important role in blood pressure regulation
U2 The dictions of lysl-bradykinin are opposed by angiotensin I1. 4 vaso-constrictive pep-
tide produced from the proteolytic cleavage ol angiotensinogen 1 by angiotensin convert-
ing enzyme (ACE) ™™

The use of the kallikreins as cancer biomarkers, particularly K2 and K3. suggests a pos-
sible role in wmor maintenance or metastasis. Inhibition of such kallikreins may prove
useful in preventing or controlling such cancers, With regard to neurological disease,
selective inhibition of K6 has been shown to delay the severity and onset ol inflammatory
CNS demyelinating disease in the mouse . Although the function of the majority of the
kallikreins remains 1o be elucidated, it 1s clear that it will be of great importance to develop
inhibitors targeted against specific members of the human Kallikrein family. Although
structural data for the kallikreins would be extremely useful in the development of such

inhibitors, the available structural data for the human kallikreins is, unfortunately, limited,
At the present time only two examples of human kallikrein structures. hK1 and hK6. are
available from the strucrural databank *~'. The available hK1 structure is of the mature
active form in the absence of any bound inhibitor (f.e. the apo form of the enzyme), The
apo hK 1 structure exhibits features that indicate that substrate binding serves 1o order the
active site into a catalytically-competent stereochemistry, and involves desolvation of an
extensive solvent network within the 82 to S2° binding pockets. Small molecules that
mimic this ape solvent network may therefore function as 4 novel type of inhibitor,

1. Active site stereochemistry of apo hK1

Human Kallikrein 1 exhibits the characteristic HisS7T/Aspl02/Ser195 “catalytic triad”
typical of the serine protease [amily. The typical rotamer for SerlY3 in serine proteases is
gauche+ (¥ = —60°): this orientation promotes an electrostatic interaction of the side
chain hydroxyl group with His57 of the catalytic triad (promoting an increase in nucle-
ophilicity) and simultaneously orients the side chain in the direction of an appropridtely
bound peptide substrate for nucleophilic attack. However, the catalytic Ser195 in the apo
hK 1 structure exhibits two different eonlormations (ganche+ and gauche-), but neither is
appropriately juxtaposed for function, In the ganche+ orientation Serl95 does nol hydro-
gen bond with the adjacent His37, rather, solvent is the primary hydrogen honding partner.
In the gauche— orientation Serl95 hydrogen bonds with the adjacent His37, but is inappro-
priately oriented for nueleophilic attack (Fig. 1).

The structure of hK6 has been solved [or both the inactive pro-form as well as the
mature active form with bound benzamidine inhibitor ™, In the pro-hK6 structure
Ser195 adopts a gauche- orientation (similar to one of the orientations ohserved in the hK1
apo form), whereas, in the mature active form with bound benzamidine the gauche+
rotamer (hydrogen-bonded to His57) of Serl95 is observed. The recombinant hK1 protein
utilized in the X-ray structure determination was shown to be equivalent in enzymatic
activity o naturally-derived hK1 ' Thus. it was concluded that the binding of substrate
contributes to in an induced-fit conformational change in the region of the active sile

Ser195 that results in a catalytically-competent stereochemistry ',

Rallikrein 1 Active Site solvent Senctire




Figure 1 Relaxed sterec dia-
gram of the active site of apo
hKt (POB 1SPY) illustrating the
alternative canformations of the
active sile Ser196 and the local
solvent structure. The gawche-
rotamier { x, = +60°) Is shown in
the lower panel, and the
gauehe+ rotamer (x, = -60°) is
shown in the upper panel
Neithet arientation In the ape
structure appears catalytically
cormpetant.
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2. 82 to 82’ binding pocket stereochemistry

Interactions within the S2 to 82" pockets of hK 1 are primary determinants of Met-Lys
bond cleavage specificity. and interactions within the S1° 10 §3" pockets have heen identi-
fied as important contributors to efficient hydrolysis of short peptide substrates ™'
Furthermore. approximately 80% of the hinding energy of peptide substrates and inhibitors
to human K1 is contributed by interactions within the 52 to 51" pockets ~". These and
other studies identily interactions within the S2 to S2' pockets as forming essential strie-
tural determinants of substrate specificity and catalytic efficiency for human K.

2-1. The 82 binding pocket

The S2 pocket of both human and porcine K1 comprises a hydrophobic cleft formed
by the side chains of residues Trp 215 and Tyr 99 ™. This hydrophobic cleft forms the
basis of the preference of human and porcine K1 for substrates with hydrophobic P2

. AR
residues ~

. While the Trp 215 side chain exhibits a chargcteristically conserved
rotamer orientation in all K1 structures (porcine Kl/benzamidine complex (2PKAJ:
porcine KI/BPTI complex (2KALY, poreine Ki/hirustasin complex (1HIA): and the pres-
ent report), the Tyr 99 side chain exhibits a variety of conformations in the different K|
structures: In the human ape K1 structure the cleft between Trp 215 and Tyr 99 in
human apo K1 is broader by approximately 0.7A in comparison to the porcine K1 struc-
tures. In addition to being broader. the human apo K1 structure exhibits an intervening
solvent molecule (Sel 939, B factor of 27.7A°, Fig. 2) between these side chains, This
solvent is positioned centrally with regard to the aromatic ring of the side chain Trp 215
and at a distance of 3.2A normal o the center of this ring, and is therefore optimally
positioned to hydrogen bond with the 1 electron cloud of the aromatic ring of Trp 215.
This hydrated open form of the §2 pockel hag not previously been observed for any
kallikrein structure. A comparison of the human ape K1 and inhibited porcine K1 struc-
tures shows that this solvent. as well as neighboring solvent 398, are excluded and the
Trp 215 and Tyr 99 tesidues move closer to cach other, forming the characteristic
hydrophobic 52 pocket upon substrate binding.

Kallikrein 1 Aewve Site Solent sticire
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Figure 2 Relaxed stereo dia-
gram aof the S2 site of apo hK1
(upper panel) and porcine K1 in
complex with bovine pancreatic
trypsin inhibitor (2KAl; lower
panel). The locatien of the
imhibitor P2 residue (Cys) is indi-
cated. Binding of the peptide
inhibiter results in a rotation of
the Tyr88 side chain, forming a
hydrophebic 52 pocket with
Trp215, and displacing solvents
398 and 359

2-2. The $1 binding pocket

The S1 pocket is formed by the main chain atoms of residue positions 214-217 and 189-
195, and includes interactions by the side chains of positions 189, 190, 195, 216, and 226,
The S1 pocket of the human ape K1 structure contains a string of solvent molecules (sol-
vent 710, 943, 785, and 691, respectively). that extend from the proximity of Ser 195 1o
Asp 189, These solvent molecules form a contiguous hydrogen bonding network. with
solvent 691 residing at the “hottom™ of the S1 pocket and hydrogen bonding 10 Asp 189
(Fig. 3). A comparison of the human apo K1 structure with the various porcing K1 struc-
tures indicates that solvents 710 and 943 are displaced by the hydrophobic side chain €7,
C’, and C” atoms of the P1 side chain Arg (1HIA) or Lys (2KAI) residues. A similar
comparison of the Structure of bovine F-trypsin in complex with a mutant form of BPTI
containing a Met at the P1 positions (3BTM™"), also indicates that solvent 710 and 943
(but neither 785 nor 691) would be displaced by this side chain. Neither solvent molecule
710 or 943 is an exclusive hydrogen bonding partner [or any protein atom, thus their dis-
placement by & hydrophobic side chain carbon atom does not result in an unsatisfied
hydrogen bonding partner within the S1 pocket. Solvent 785 is replaced by Lys N°
{(2KAI) or Are N'' (1HIA) and solvent 691 is replaced by Are N'° (1HIA). Solvent 785
serves as the exclusive hydrogen honding partner of the main chain carbonyl of position
Thr 190. Being replaced by either the P1 Lys N™ or Arg N7 group thus maintains impor-
tant hydrogen bonding interactions within the S1 pocket. As with'a P1 Arg bound in the S1
pocket. Sol 691 also is displaced when Lys binds (2KAI). Thus, the displaced solvent
within the S1 pockel provides a “road map™ for the locations of the side chain atoms of the
Pl residue.

2-3. The 81' binding pocket
In the human apo K1 structure the S1° pocket is occupied by solvent molecules 854 and

789 that extend from the proximity of a bound P1* C* outward. respectively. In the

‘absence of a bound peptide inhibitor the side chain of Gln 41 adopts a - angle of ~ - 60°.

Tep 215 | '&soi 93'5;.'
. &¢ Sol939 X ?-.‘
K“ Tyr 84 = 5

‘/ ,&a::_‘ .

o \n

o
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Figure 3  Relaxed stereo dia-
gram of the 81 site of apo hK1
{upper panel) and porging K1 in
complex with hirustasin (1HIA;
lower panel). The P2 to P2'
residues: of the hirustasin
inhibitor are indicated in dark
grey shading The solvent strue-
ture within the $1 binding pocket
in apo hK1 is indicated, and spe-
cific solvent displaced by the
bound P1 side chaln atoms are
identifled.

However, in the porcine Ki/hirustasin complex the Gln 41 side chain adopts a ¥ angle of
~ 1807, “flipping up™ and orienting lengthwise along the edge of the S1° pocker (Fig. 4).
The rotation ol the Gln 41 side chain appears necessary to avoid a steric clash with the
main chain carbonyl oxygen of a bound P2’ residue. Consequently the His 35 side chain
must rotate out of the way of the repositioned Gln 41 side chain, and the His side chain
rotates 120%, from the gauche+ rotamer to trans. Inspection of the porcine K 1/Hirustasin
complex (1HIA) with an Ile side chain in the P1" position, shows that the side chain €'
and C* atoms follow the solvent 854 and 789 channel in human apo K1: The reoriented
Gln 41 side chain provides van der Waals contact surface along the side of the $1° pocket
for a bound P1" aliphatic side chain. Since the structural changes of Gln 41 appear to arise
from the presence of a bound P2" main chain carbonyl, there is an apparent syneroy
between the binding of the P2 main chain and the P1" side chain. thus substrates lacking a
P2" residue may exhibit reduced affinity for the P1° residue.

2-4. The §2' binding pocket

The 827 pocket is:a hydrophobic clelt formed by residue positions Phe 40, Phe 151, and
Gly 193, These residues are essentially juxtaposed when comparing an overlay of human
apo K1 with either porcine Kl/benzamidine complex (2PKA: empty 27 pocket), porcine
KI/BPTI complex (2KAI; Arg in the P2° position), or porcine Kl/hirustasin complex
(IHIA: Arg in the P2 position). There are two solvent molecules located in the 27 pocket
in human apo K1 (925, and 931) and these are displaced by the terminal guanidino group
of the P2° Arg residue (see Fig. 4). Thus, the structural alterations upon the binding of a
P2’ residue primarily involve displacement of these solvent groups.
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Figure 4  Relaxed sterso dia-
gram of the 81" site of apo hK1
{upper panel) and porcing K1 in
complex with hirustasin (1HIA;
lower panel). The P2 to P2
residues: of the hirustasin
inhibitor are indicated in dark
grey shading. The solvent struc-
ture within, and adjacent to, the

51" binding pocket in apo hK1 is

indicated, and specific solvent
displaced by the bound P1' side
chain atoms are identified.

3. Displaced solvent network

The solvent displaced upon binding ol a peptide inhibitor/substrate within the 52 to 82
puckets of WK fall into three general categories: 1) solvent displaced by bound main ¢hain
groups, 2) solvent displaced by the side chain groups of the bound peptide, and 3) solvent
displaced as a direct consequence of structural changes induced by bound peptide. Table 1
lists the set of displaced solvent within the 82 1o §2' sites upon peptide binding. A total of
seven solvent groups are displaced by peptide P2 1o P2" main chain atoms (e, approxi-
mately 2 solvent per residue). The number of solvent displaced by the side chain groups of
these residues is dependent upon the particular amino acids, however, a total of 10 solvent
are identified that can be displaced by side chains bound within the $2 to S27 pockets. with
a P arginine displacing the greatest number (four total). Finally. two solvent are displaced
due o rearrangements within the S2 pocket upon peptide binding. A tetra peptide substrate
or inhibitor bound within the $2 to S2° pockets can therefore potentially displace up to 19

wordered solvent molecules in the human K1 structure. Related solvent networks. or

“canals”, postulated o be displaced upon substrate binding. hive been observed in high-

L}
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resolution structures of bovine trypsin and porcine elastase . although neither are as

extensive as in hK|. The release of a localized solvent [rom a protein binding pockel 1%
associated with an entropic gain of approximately 2.1 keal/mol ™, Thus, the release of 19
solvent molecules in hK1 by a bound peptide inhibitor/substrate represents @ substantial

contribution to the overall binding free-energy.

4. Design of a novel inhibitor based upon the solvent network
within the S2 to S2’ pockets

Fig. 5 illustrates an overlay of the solvent structure within the apo hK1 82 1o 527 bind-
ing pockets with the P2 1o P2" region ol the hirustatin inhibitor as bound within the
porcine K1 structure (1 HIA). While the P2 to P27 peptide displaces these solvent groups it

does not substitute polar groups within identical three-dimensional juxtapositions. This

resulis in adjustments within the structure $o as to optimize hydrogen-bonding and van der
Waals interactions with the peptide, and are presumably associated with the mduced-fit
conformational changes that result in a catalytically-competent WK1 stricture. We further-
more hypothesize that if a small molecule were designed to mimic this solvent structure
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Table 1 Solvent displaced
upon peptide binding in the S2
to 52" sites in human K1

Peptide group Displaced solvent (side chain atoms involved)
P2 main chain 616, 651
P1 main chain 638, 720, 941
P1’ main chain 638
P2’ main chain 726, 741
P2 side chain 850 ()
P1 side chain TIO( 3,7 )i 943 (3, e, £ 691(L,9), 785 (L, 7)
P1’ side chain 854 (3,7),789 (8, ) 657(2,7)
P2 side chain 925 L) 03LEE 1)
Formation of $2 pocket 938, 930
850 850 _
= 789 = 78y
s
_,._a.\ 951‘.-':"\. _?Q‘: § qslt_;. 3 e
65.1 516 =G41 "a 354\?725 '651.- 516 F.le.;{., 8519726
Lo au® ] L3 o f
; ‘5,.'?‘\_;,_'?.’-\.:'_,0’ NS o
93 7 e-NTpag 7410 943 Je-dag ¢
e S I _ s SeATT90 T4IN
@ 710 < 710 931
o~ 785 - N Lo T N A
691 3 ( 691 \
° |
925 925

Figure 5 Relaxed slereo diagram of the solvenl structure within the S2 to 82' bind-
ing pockets of apo hiK1 averlaid with the P2 to P2 residuas fram the porcine
K1/hirustasin complex. The P2 to P2 peptide digplaces his solvent siruclurg, but
dees not exactly juxtapose polar groups, thus resulting in an induced fit upon bind-
ing that pramotes a kinetically-competent structure. (page )

within the §2 to $27 binding pockets of the gpo hK1 structure it would selectively bind to,

and stabilize. the apo hK1 structure. Since this structure is not catalytically competent.
such @ molecule would be an effective inhibitor of hK1. This would represent a novel type

of inhibitor. however, it remains to be seen il such a molecule can he constructed.
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